
Closing Gaps between Capture and Replay:
Model-based GUI Testing

Oliver Stadie and Peter M. Kruse

Berner & Mattner Systemtechnik GmbH, Berlin, Germany,
{oliver.stadie|peter.kruse}@berner-mattner.com

Abstract. Testing software as a black box can be time consuming and error-
prone. Operating and monitoring the graphical user interface is a generic method
to test such systems. This work deals with convenient and systematic testing of
GUI software systems. It presents a new approach to model-based GUI testing
by combining the strengths of four well-researched areas combined: (1) the in-
tuitive capture&replay method, (2) widget trees for modeling the GUI, (3) state
charts and (4) the classification tree method. The approach is implemented as
a prototype and is currently under validation on a real GUI. The presented ap-
proach includes the whole test cycle, from scanning the GUI and model-based
test specification to the automatic execution of tests.

Keywords: Automated GUI Testing, Systematic GUI Testing, Model-based Testing,
Classification Tree Method, State Chart, Capture&Replay

1 Introduction

There are many approaches, how to test software. Today, many software systems pro-
vide a graphical user interface (GUI) to ease the users to access these systems. When
testing these software systems, the GUI can be used to test the software from the user-
perspective (black box testing) or to test the GUI itself. In current systems, the GUI
takes up to 60 percent of the total source code [1]. Testing generally causes 50 per-
cent of the total costs of software development [2]. By automating GUI tests, up to 80
percent of the costs could be saved compared to manual GUI testing [3].

Especially for regression testing, a major problem is that changes to the GUI should
not require manual steps in order to adapt the test [4].

Semi and fully automatic methods have been published, in order to simplify the
GUI testing process [3, 5]. Nevertheless, the approach most widely used is still cap-
ture&replay [6]. This gap between explored and used methods could be due to a lack of
intuitiveness, learning and lack of tool support.

In this work we develop a method to support the GUI testing process by combining
existing methods. The developed method is to be implemented in a tool that can be used
for any type of GUI, regardless of the underlying technology. Specifically, the following
methods and models are used: the capture&replay method [7], widget trees [8], state
charts [9] (esp. UML state diagrams), and the classification tree method [10].



Table 1. Combined Methods and Models in This Work

Method Advantages Disadvantages
Capture&Replay- Intuitive Usability - High Maintenance Costs
[7] - Widespread - Low Stability against Changes

- Quick and Easy Specification of Indi-
vidual Sequences
- Simple Means to Scan the GUI

Widget Trees - Detailed Modeling of GUI States - Stability to Changes Uncertain
[8] - Convenient Management and

Overview by Hierarchies
State Charts [9] - Modeling and Selection of System Be-

havior (Sequences)
- Difficult Automated Construction

- Relatively Stable to GUI Changes
- Easy to Learn

Classification
Tree Method

- Classification of the Input Data Space,
Reduction of the Necessary Test Cases

- Can be Too Large for Complex Sys-
tems (Splitting into Several Trees

[10] - Systematic Derivation of Test Cases Circumvents the Problem)
- Established in Practice
- Suitable for Functional Black Box
Testing

These methods are to be combined in the following sections, with the aim to obtain
as many of the benefits as possible and to eliminate as many of the disadvantages as
possible (Table 1).

2 Background

The widespread capture&replay tools work as follows: The tester records a manually
executed sequence of actions on the GUI. This is the capture phase. Then the recorded
sequence can automatically be executed on the GUI repeatedly. That’s the replay phase.
One advantage of capture&replay tools is that they can be easily learned and used. A
draw-back is that they are not inherently systematic, so the quality of the recorded test
depends of the skills of the tester [7].

Memon pays attention to both the importance and the lack of GUI test methods [7].
Methods used are often unsystematic, ad hoc or too expensive.

Surveying recent works related to model based GUI testing [11–13], reveals that
there are two dominant methods for modeling GUIs. One common approach in model-
based testing are state charts [5]. A second approach is the model of Memon et al.
consisting of GUI forest, event-flow graphs and integration tree [14].

Widget Trees are another approach to modeling of GUI-states [8]. Widget trees
focus on the modeling of all elements in the widget hierarchy, while state charts model
the behavior and possible navigation paths through the system.

A systematic method for test specification is the classification tree method [10].
TESTONA is a test tool that implements the classification tree method [15, 16].



3 Approach

The developed method supports the tester in testing a model-based GUI. The method
forms a cycle, which (1) starts and analyzes the GUI, it then (2) creates GUI models,
from these (3) derives test sequences and ultimately (4) executes these sequences again
on the GUI (Figure 1).

Fig. 1. Workflow

1. The tester initiates the capture process part. The tester performs to be recorded
sequences, by using peripherals1 (mouse and keyboard), on the system under test
(SUT).

2. The inputs in the periphery and the output of the SUT can be observed and models
of GUI are created and updated from it. After the tester completes a sequence, they
can restart the capture process any number of times to record additional sequences.

3. The created GUI model is presented to the tester for test sequence generation.
4. Finally, the tester triggers the test sequence execution. The SUT is started automati-

cally for each test sequence and manipulated automatically via generated, simulated
peripheral inputs.

3.1 Capture

The first phase of the process ensures the creation of capture sequences. After starting
the SUT, its GUI is scanned to determine its initial state. The tester makes any number

1 Device used to put information into or get information out of the computer. Also called in-
put/output device. [17]



of inputs on the keyboard and mouse during each recording. Each of these inputs affects
the SUT. Thereafter, the method links the input to the last recorded GUI state and reads
the new GUI. Each GUI scan is stored as a widget tree.

Stabilization: For all widgets in the widget tree, the details are reduced and only
names and types are kept, resulting in a discarding of e.g. widget dimensions, pixel
positions, colors, IDs (similar to [18]). This is done for increased robustness, esp. in
regression testing. The interrelation of widgets is only maintained using their location
in the widget tree.

Merging: Multiple similar user actions without consequences to the widget tree
can be merged, e.g. typing several single letters into a textbox or moving around the
mouse without actually clicking (assuming there are no interactive reactions cause by
the typing and no hover-reactions of traversed GUI elements). This is done do limit
state explosion.

Each capture sequence contains a (merged) chain of traversed states and transitions
of the SUT. Each transition has an atomic action as its trigger. Each state consists of a
stabilized widget tree. The model of capture sequences is a non-empty set of capture
sequences, which in turn are modeled as traversed states and actions performed.

3.2 Abstraction of Models

After capturing has been completed, abstraction of GUI Models is performed. The cap-
ture sequences lack a relationship between the sequences and their branches. Therefore,
we use the following heuristics to merge the capture sequences:

Treat equal what looks equal: Since operation is performed on stabilized widget
trees, the algorithm merges sequences so that equal looking steps (containing widgets
with same name and type) are merged into single states of the resulting state chart.

Hierarchy: To create state chart hierarchies, a state on the first level of the state
chart is created for each modal window. Each window state has a set of sub states for
different application modes. All widget trees from all capture sequences with the same
type structure (discarding all other properties, such as name) are merged into single
application modes (all on the second level of the state chart). Each application mode
state contains a set of sub states, derived from the text of the widgets in the widget
tree. So we use the similarity in widget tree structures for creation of states on second
level and the differences in widget tree properties (especially widget text) for creation
of states on third level of the state chart.

Concurrency: Orthogonality is created using a set of predefined widgets, such as
the main menu and pop-up menus. Once a menu is used in any sequence recorded, it is
considers always accessible, independent of actual access in recorded sequences. The
behavior of each such menu is modeled in its own orthogonal region in the state chart.

The first and the third heuristic here increase the possible number of variations
and permutations in later test design. In contrast to the plain playback of linear se-
quences in conventional capture&replay. This generalization might however lead to
non-executable sequences.

Each GUI-model consists of a set of widget trees, a state chart and a classification
tree created from the state chart (as described in [19]). Each widget tree is assigned to
exactly one state in the state machine.



3.3 Specification of Test Sequences

In the third phase, test sequences are specified. First, the classification tree part of the
GUI model is used to identify test sequences and—as in the ordinary classification tree
method [19]—described in a test matrix. Each sequence also represents a path through
the state chart. The state machine is used to constrain possible test sequences. The
sequences determined meet coverage criteria such as state coverage or path coverage.

Each test sequence defines a sequence of states to reach. Since the state chart has
a higher abstraction level than the captured sequences, non-caputured sequences may
occur here. The handling of infeasible paths in sequences is not yet automated and
therefore left to the tester. The required actions to traverse the states are defined in
the state chart. As such, events carry those input values (e.g. for text fields) that were
recorded in the initial capture phase. The tester can however adopt these as part of test
specification.

3.4 Test Execution

In the fourth phase, the previously specified test sequences are executed automatically.
At this stage, all given test sequences are treated sequentially. At the beginning of each
test sequence, the SUT will be started automatically. Similar to [18], it is required that
the SUT always starts into the same initial state. The tester needs to take care of this
(e.g. by resetting the SUT preferences prior test execution).

Each test step is then processed from each test sequence. First, the GUI is scanned
to identify its widget tree. The to-use widget is searched in the widget tree. The action
to be carried out by operation of the peripherals is then simulated. The tester can define
a delay time between execution steps. Otherwise all events are fired as fast as possible,
potentially leading to the SUT not receiving all events.

After all steps of a test sequence are performed, the SUT is terminated. After com-
pleting all the test sequences, this phase ends.

Simple test results can be produced here by comparing the actual with the expected
widget trees after each step. This also includes reporting whether each action could be
performed.

4 Evaluation

The developed solution has been implemented as a plug-in for TESTONA2 and cur-
rently works for all GUIs in Windows operating systems (Figure 2). To this end, several
existing works—as frameworks and libraries—have been reused.

The approach used here conforms to a general structure for GUI tests [20]: A test-
ing framework consisting of a technology-independent GUI model and the general test
sequence specification were already implemented as XML specifications.

The implementation of the developed method is currently under evaluation quantita-
tively and qualitatively for several GUI systems. The results of evaluation are intended

2 http://www.testona.net



Fig. 2. Execution of Tests

to provide indications of the practicality of the developed test design process and about
the quality of the prototype.

We have obtained some first results. In our approach widgets are described in terms
of their name and type. This choice is sufficient for inferring a good abstraction of
the model in the Windows applications tested, as for example most of the time button
names were similar to their caption. This might be due to the Windows API or sim-
ply be good design of tested applications (Windows Calculator, TESTONA tool itself).
With a growing body of applications under test, we might need to consider different
stabilization rules.

Currently, keyboard and mouse inputs by the tester are the only
Table 1 lists the four methods used in our approach with their individual strengths

and weaknesses. We will now evaluate, whether the combination of methods helps to
overcome weaknesses without sacrificing the strengths.

4.1 Capture&Replay

A general problem with capture&replay are the high maintenance costs due to low sta-
bility of captured sequences against changes. By using widget trees and by scanning the
GUI during test execution, our approach reduces the maintenance costs with increased
stability against changes of the GUI. Details on cost reduction and on how stable the
approach actually is, have not yet been provided due missing evaluation in detail.

The advantages of capture&replay are all preserved. Our combined approach also
relies on the intuitive usability. The recorded individual sequences are, however, used
to abstract a general GUI model, which allows more variation in later test specification.

4.2 Widget Trees

The stability of widget trees against changes in the application has not yet been as-
sessed. Without a large-scale evaluation, we cannot yet overcome this problem.

The advantage of widget trees, both detailed modeling of GUIs and the introduction
of hierarchies for better overview, are both kept.

4.3 State Charts

The construction of state charts is a challenging task. By introduction of heuristics
provided, this weakness is completely resolved.

The strengths of state charts are all maintained. The influence of GUI changes to
the stability of state charts have not yet been verified.



4.4 Classification Tree Method

By only including relevant parts of the state chart to the classification tree, the size of
trees is kept small.

The mentioned advantages are all preserved. The automated generation of test se-
quences is considered helpful.

5 Related Work

Bauersfeld and Vos also implement a tool for testing GUI system: GUITest [18]. Their
tool provides the following features, also present in our implementation: a) Works on
all native GUIs, which are recognized by the Windows API. b) SUT must not be instru-
mented. c) Allows the user to define their own actions. d) Generated Test sequences can
be stored and played back.

In contrast to GUITest our tool offers the following features: a) GUITest specializes
in robustness tests. That is, it searches automatically for random test sequences through
the GUI, without necessarily representing realistic or target-oriented user behavior. The
point is to find errors. Our implementation is especially useful for functional testing.
The aim here is to test if specific requirements are met and the SUT fulfills its intended
purpose. b) Compared to GUITest our implementation displays the model of GUI and
test sequences.

Memon et al. also offer an implementation—similar to this work—for model-based
GUI testing, with prototypical capture, semi-automatic modeling and automated execu-
tion [14]. While Memon et al. model the SUT with GUI forests, event-flow graphs and
integration trees, this work uses state chart, widget trees and classification trees.

We assume, that state charts are more suitable, because they are more compact due
to hierarchies and orthogonality. Test models intended for end-user (Tester) presentation
should be understandable. In this case, state charts might be better, esp. when dealing
with self-transitions, which can occur in GUIs. However, state charts are not considered
better per se.

Nguyen et al. combine state charts with the classification tree method [21]. They
choose paths on the state chart, representing abstract test sequences. For each of these
paths, they construct a classification tree. With these trees several specific test sequences
are specified for each path. Nguyen et al. see the strength of the state charts in the
specification and selection of sequences (consecutive events) and the strength of the
classification tree method in the selection of specific input parameters and a meaningful
reduction of the input parameters.

In the context of web applications, there are similar approaches [22, 20]. While this
also is a challenging field, our work focuses on native applications outside the browser.

6 Conclusion

The developed tool enables the user to comfortably create GUI models by capturing.
GUI models are then used for systematical test design in terms of the classification tree



method. Resulting test scenarios can be automatically executed on the SUT. Such sce-
narios allow to test the GUI itself or to use the GUI for black-box testing the underlying
system.

Despite the problems worked out the combination of the four methods capture&replay,
widget trees, state charts, and classification trees seem to be much-promising and suit-
able for the testing of GUI systems. Weaknesses of single methods were overcome
without accepting many sacrifice of their strengths. Many of the problems identified
will be addressed in future work.

Future work will also concentrate on a large scale evaluation and comparison with
capture&replay tools in terms of efficiency and effectiveness considering both, initial
creation and maintenance efforts.

References

1. Brad A Myers. User interface software tools. ACM Transactions on Computer-Human
Interaction (TOCHI), 2(1):64–103, 1995.

2. Frederick P Brooks. The mythical man-month, volume 1995. Addison-Wesley Reading, MA,
1975.

3. Michael Turpin. Survey of gui testing processes. 2008.
4. Atif M Memon and Mary Lou Soffa. Regression testing of GUIs. ACM SIGSOFT Software

Engineering Notes, 28(5):118–127, 2003.
5. Imran Ali Qureshi and Aamer Nadeem. Gui testing techniques: A survey. International

Journal of Future Computer and Communication, 2(2), 2013.
6. Stephan Arlt, Cristiano Bertolini, Simon Pahl, and Martin Schäf. Trends in model-based gui

testing. Advances in Computers, 86:183–222, 2012.
7. Atif M Memon. Gui testing: Pitfalls and process. Computer, 35(8):87–88, 2002.
8. Sebastian Bauersfeld, Stefan Wappler, and Joachim Wegener. A metaheuristic approach to

test sequence generation for applications with a gui. In Search Based Software Engineering,
pages 173–187. Springer, 2011.

9. David Harel. Statecharts: a visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, 1987.

10. Matthias Grochtmann and Klaus Grimm. Classification trees for partition testing. Softw.
Test., Verif. Reliab., 3(2):63–82, 1993.

11. Valéria Lelli, Arnaud Blouin, Benoit Baudry, and Fabien Coulon. On model-based testing
advanced GUIs. In Software Testing, Verification and Validation Workshops (ICSTW), 2015
IEEE Eighth International Conference on, pages 1–10. IEEE, 2015.

12. Pekka Aho, Matias Suarez, Atif Memon, and Teemu Kanstrén. Making GUI testing prac-
tical: Bridging the gaps. In Information Technology-New Generations (ITNG), 2015 12th
International Conference on, pages 439–444. IEEE, 2015.

13. Tanja EJ Vos, Peter M Kruse, Nelly Condori-Fernández, Sebastian Bauersfeld, and Joachim
Wegener. TESTAR: Tool support for test automation at the user interface level. International
Journal of Information System Modeling and Design (IJISMD), 6(3):46–83, 2015.

14. Atif M Memon, Ishan Banerjee, and Adithya Nagarajan. GUI ripping: Reverse engineer-
ing of graphical user interfaces for testing. In 2013 20th Working Conference on Reverse
Engineering (WCRE), pages 260–260. IEEE Computer Society, 2003.

15. Peter M Kruse and Magdalena Luniak. Automated test case generation using classification
trees. Software Quality Professional, 13(1):4–12, 2010.



16. Eckard Lehmann and Joachim Wegener. Test case design by means of the CTE XL. Pro-
ceedings of the 8th European International Conference on Software Testing, Analysis and
Review (EuroSTAR 2000), Kopenhagen, Denmark, December, 2000.

17. Philip A Laplante. Dictionary of Computer Science, Engineering and Technology. CRC
Press, 2000.

18. Sebastian Bauersfeld and Tanja EJ Vos. Guitest: a java library for fully automated gui robust-
ness testing. In Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering, pages 330–333. ACM, 2012.

19. Peter M Kruse and Joachim Wegener. Test sequence generation from classification trees. In
Proceedings of ICST 2012 Workshops (ICSTW 2012), Montreal, Canada, 2012.

20. Peter M Kruse, Jirka Nasarek, and Nelly Condori Fernandez. Systematic testing of web
applications with the classification tree method. In Proceedings of the XVII Iberoamerican
Conference on Software Engineering (CIbSE 2014), 2014.

21. Cu D Nguyen, Alessandro Marchetto, and Paolo Tonella. Combining model-based and com-
binatorial testing for effective test case generation. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis, pages 100–110. ACM, 2012.

22. Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana. Rich internet appli-
cation testing using execution trace data. In Software Testing, Verification, and Validation
Workshops (ICSTW), 2010 Third International Conference on, pages 274–283. IEEE, 2010.


